Permanent nucleosome exclusion from the Gal4p-inducible yeast GCY1 promoter.
نویسندگان
چکیده
The promoter of the galactose-inducible yeast GCY1 gene allows high rates of basal transcription and is kept free of nucleosomes regardless of growth conditions. The general regulatory factor, Reb1p, as well as the nucleotide sequence of a single Gal4p-binding site, structurally cooperate to exclude nucleosomes from about 480 bp of DNA that spans the UAS(GAL), the Reb1p-binding site, the TATA-box, and the transcriptional initiation sites. Gal4p, which induces transcription of GCY1 about 25-fold in the presence of galactose, is not required for the alteration in chromatin configuration in the promoter upstream region since the hypersensitive site is unchanged when Gal4p is inactive or absent. As soon as either the Reb1p-binding site or the UAS(GAL) or both are mutated, nucleosomes slip into the promoter of GCY1 paralleled by a reduction of basal transcription activity to about 30% in either single mutant and to <10% in the double mutant. In the mutant of the Reb1p-binding site, induction by galactose/Gal4p restores a nucleosome-free state to an extent resembling the GCY1 wild-type promoter, showing that, in principle, activated Gal4p can exclude nucleosomes on its own. Northern blots of GCY1 transcripts confirm that Reb1p modulates basal transcription and has little influence on the galactose-induced state.
منابع مشابه
The Effect of an Intervening Promoter Nucleosome on Gene Expression
Nucleosomes, which are the basic packaging units of chromatin, are stably positioned in promoters upstream of most stress-inducible genes. These promoter nucleosomes are generally thought to repress gene expression due to exclusion; they prevent transcription factors from accessing their target sites on the DNA. However, the role of promoter nucleosomes that do not directly occlude transcriptio...
متن کاملGene activation by interaction of an inhibitor with a cytoplasmic signaling protein.
Galactose-inducible genes (GAL genes) in yeast Saccharomyces cerevisiae are efficiently transcribed only when the sequence-specific transcription activator Gal4p is activated. Activation of Gal4p requires the interaction between the Gal4p inhibitory protein Gal80p and the galactokinase paralog, Gal3p. It has been proposed that Gal3p binds to a Gal80p-Gal4p complex in the nucleus to activate Gal...
متن کاملPromoter-specific inhibition of transcription by daunorubicin in Saccharomyces cerevisiae.
Several anti-tumour drugs exert some of their cytotoxic effects by direct binding to DNA, thus inhibiting the transcription of certain genes. We analysed the influence of the anti-tumour antibiotic daunorubicin on the transcription of different genes in vivo using the budding yeast Saccharomyces cerevisiae. Daunorubicin only affected wild-type yeast strains at very high concentrations; however,...
متن کاملVhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5.
Transcription of the Saccharomyces cerevisiae vitamin H transporter gene VHT1 is enhanced by low extracellular biotin. Here we present the identification and characterization of Vhr1p as a transcriptional regulator of VHT1 (VHR1 (YIL056w); VHT1 regulator 1) and the identification of the cis-regulatory target sequences for Vhr1p in two yeast promoters. VHR1 was identified in a complementation sc...
متن کاملEngineering of GAL1 promoter-driven expression system with artificial transcription factors.
We isolated and characterized artificial transcription factors (ATFs) that functionally activate GAL1 promoter in yeast. These ATFs transformed the yeast galactose-dependent GAL1 promoter system into a galactose-independent one. The ATFs were identified by screening a combinatorial library of zinc finger-containing transcription factors for components that activated the transcription of a repor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 13 شماره
صفحات -
تاریخ انتشار 2003